Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 340: 122441, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38253309

ABSTRACT

Although nalbuphine, a semi-synthetic analgesic compound, is less potent than morphine in terms of alleviating severe pain, our recent findings have revealed that nalbuphine-6-glucuronide (N6G), one of the glucuronide metabolites of nalbuphine, promotes a significantly more robust analgesic effect than its parent drug. Nevertheless, despite these promising observations, the precise mechanisms underlying the analgesic effects of nalbuphine glucuronides have yet to be determined. In this study, we aim to elucidate the mechanisms associated with the analgesic effects of nalbuphine glucuronides. Pharmacokinetic and pharmacodynamic studies were conducted to investigate the relationship between the central and peripheral compartments of nalbuphine and its derivatives. The analgesic responses of these compounds were evaluated based on multiple behavioral tests involving thermal and mechanical stimuli. Radioligand binding assays were also performed to determine the binding affinity and selectivity of these compounds for different opioid receptors. The results of these tests consistently confirmed that the heightened analgesic effects of N6G are mediated through its enhanced binding affinity for both mu- and kappa-opioid receptors, even comparable to those of morphine. Notably, N6G exhibited fewer side effects and did not induce sudden death, thereby highlighting its superior safety profile. Additionally, pharmacokinetic studies indicated that N6G could cross the blood-brain barrier when administered peripherally, offering pain relief. Overall, N6G provides great analgesic efficacy and enhanced safety. These findings highlight the potential value of nalbuphine glucuronides, particularly N6G, as promising candidates for the development of novel analgesic drugs.


Subject(s)
Nalbuphine , Receptors, Opioid, kappa , Humans , Nalbuphine/adverse effects , Receptors, Opioid, mu , Glucuronides/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Receptors, Opioid/metabolism , Morphine/adverse effects , Pain/drug therapy , Pain/chemically induced , Analgesics, Opioid/therapeutic use
2.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269274

ABSTRACT

By combining the excellent biocompatibility of molybdenum disulfide (MoS2), excellent surface-enhanced Raman scattering (SERS) activity of Au nanoparticles (Au NPs), and large surface area of Si nanosquare holes (NSHs), a structure in which MoS2 is decorated with Au NPs on Si NSHs, was proposed for SERS applications. The NSH structure fabricated by e-beam lithography possessed 500 nm of squares and a depth of approximately 90 nm. Consequently, a few-layer MoS2 thin films (2-4 layers) were grown by the sulfurization of the MoO3 thin film deposited on Si NSHs. SERS measurements indicated that MoS2 decorated with Au NPs/Si NSHs provided an extremely low limit of detection (ca. 10-11 M) for R6G, with a high enhancement factor (4.54 × 109) relative to normal Raman spectroscopy. Our results revealed that a large surface area of the NSH structure would probably absorb more R6G molecules and generate more excitons through charge transfer, further leading to the improvement of the chemical mechanism (CM) effect between MoS2 and R6G. Meanwhile, the electromagnetic mechanism (EM) produced by Au NPs effectively enhances SERS signals. The mechanism of the SERS enhancement in the structure is described and discussed in detail. By combining the hybrid effects of both CM and EM to obtain a highly efficient SERS performance, MoS2 decorated with Au NPs/Si NSHs is expected to become a new type of SERS substrate for biomedical detection.

3.
Nanomaterials (Basel) ; 11(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803940

ABSTRACT

Two-dimensional layered material Molybdenum disulfide (MoS2) exhibits a flat surface without dangling bonds and is expected to be a suitable surface-enhanced Raman scattering (SERS) substrate for the detection of organic molecules. However, further fabrication of nanostructures for enhancement of SERS is necessary because of the low detection efficiency of MoS2. In this paper, period-distribution Si/MoS2 core/shell nanopillar (NP) arrays were fabricated for SERS. The MoS2 thin films were formed on the surface of Si NPs by sulfurizing the MoO3 thin films coated on the Si NP arrays. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were performed to characterize Si/MoS2 core-shell nanostructure. In comparison with a bare Si substrate and MoS2 thin film, the use of Si/MoS2 core-shell NP arrays as SERS substrates enhances the intensity of each SERS signal peak for Rhodamine 6G (R6G) molecules, and especially exhibits about 75-fold and 7-fold enhancements in the 1361 cm-1 peak signal, respectively. We suggest that the Si/MoS2 core-shell NP arrays with larger area could absorb more R6G molecules and provide larger interfaces between MoS2 and R6G molecules, leading to higher opportunity of charge transfer process and exciton transitions. Therefore, the Si/MoS2 core/shell NP arrays could effectively enhance SERS signal and serve as excellent SERS substrates in biomedical detection.

4.
Eur J Pharm Sci ; 141: 105093, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31648049

ABSTRACT

Reaction phenotyping is a method commonly used for characterizing drug metabolism. It determines the drug metabolic pathways and ratios by measuring the metabolized fractions of individual enzymes. However, currently published results have focused on cytochrome P450s (CYPs), while not considering phase II metabolism. Therefore, the morphinan analgesic, nalbuphine, primarily metabolized in the liver via CYPs and UDP-glucuronosyltransferases (UGTs), was selected as a model drug to establish a dual-phase platform to elucidate its comprehensive metabolic pathway. Enzyme kinetics was studied using 8 common recombinant (r)CYPs, 10 rUGTs, and pooled human liver microsomes. The overall fraction of nalbuphine metabolized by each isozyme was evaluated by determining parent drug depletion. Finally, in vitro-in vivo correlation was validated in animal studies. Fluconazole, a specific UGT2B7 inhibitor, was administered orally to rats to determine the pharmacokinetic effects on nalbuphine and nalbuphine metabolites. Seventy-five percent and 25% of nalbuphine was metabolized by UGTs and CYPs, respectively. UGT2B7, UGT1A3, and UGT1A9 were primarily responsible for nalbuphine glucuronidation; only UGT2B7 produced nalbuphine-6-glucuronide. CYP2C9 and CYP2C19 were the two CYP isozymes that produced 3'-hydroxylnalbuphine and 4'-hydroxylnalbuphine. In vivo, the maximum serum concentration (Cmax) and area under the curve (AUC) of nalbuphine increased 12.4-fold and 13.2-fold, respectively, with fluconazole co-administration. A dual system platform for drug metabolism was successfully established in this study and was used to generate a complete metabolic scheme for nalbuphine. This platform has been verified by in vivo evaluations and can be utilized to study drugs that undergo multisystem metabolism.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Nalbuphine/pharmacokinetics , Analgesics, Opioid/blood , Analgesics, Opioid/pharmacology , Animals , Humans , Isoenzymes/metabolism , Male , Microsomes, Liver/metabolism , Nalbuphine/blood , Nalbuphine/pharmacology , Rats, Sprague-Dawley , Recombinant Proteins/metabolism
5.
Eur J Med Chem ; 178: 544-551, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31212133

ABSTRACT

Nalbuphine, a partial agonist/antagonist opioid analgesic, is structurally related to morphine. It is equipotent to morphine and has no serious side effects. In the past few decades, studies focusing on morphine metabolism have indicated that one of its sugar-conjugated metabolites, morphine-6-glucuronide, exerts a higher analgesic effect than its parent drug. Considering that nalbuphine is a morphine analog that follows a similar metabolic scheme, nalbuphine glucuronides were synthesized in this study and their potential analgesic effects were assessed. Nalbuphine-3-glucuronide (N3G) and nalbuphine-6-glucuronide (N6G) were synthesized based on Schmidt's glycosylation with OPiv protections on the glycosyl donor. In a pharmacodynamic study, paw pressure and cold-ethanol tail-flick tests were conducted in rats to evaluate the analgesic response after intracisternal and intraperitoneal administrations of nalbuphine, N3G, or N6G. The antinociceptive response was evaluated for each compound by calculating the area under the curve and the duration spent at greater than 50% maximum possible analgesia. In conclusion, intracisternal administration of N6G exhibited a stronger analgesic response than nalbuphine in the pain tests after both cold and mechanical stimuli, but N3G had no obvious effect. Similar to that of morphine, the glucuronide metabolite of nalbuphine at the 6-O-position exerted at least three-fold higher antinociceptive potency and five-fold longer analgesic duration than nalbuphine.


Subject(s)
Analgesics, Opioid/pharmacology , Glucuronides/pharmacology , Pain Threshold/drug effects , Pain/drug therapy , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/chemistry , Animals , Dose-Response Relationship, Drug , Glucuronides/chemical synthesis , Glucuronides/chemistry , Male , Molecular Structure , Pain Measurement , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
Pharm Res ; 36(2): 32, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30604282

ABSTRACT

PURPOSE: Various blood collection methods were developed and used in the pharmacokinetic evaluation of drugs. However, the influence of different blood sampling methods on plasma drug concentrations has not been clarified. In the present study, we aimed to determine whether the plasma concentration of a target drug changes based on the collection site and elucidate the mechanism responsible for this change. METHODS: We compared three blood sampling methods commonly used in small animals. Eight clinical drugs were selected and administered to rats simultaneously via intracardiac injection or oral gavage. Blood samples were collected from different sites at the same individual, and pharmacokinetic properties of the drugs were then evaluated. RESULTS: Study results showed that the maximum plasma concentration or area under the curve of three study drugs was significantly higher in rats when blood was sampled from the carotid artery than when it was sampled from the caudal vein or by tail snip. CONCLUSIONS: Pharmacokinetics of certain drugs may differ based on the blood sampling site. The acid-base properties of drugs may influence pharmacokinetic evaluation. The rate and extent of drug distribution may also cause such differences and have significant effects on plasma drug levels.


Subject(s)
Blood Specimen Collection/methods , Pharmaceutical Preparations/blood , Animals , Area Under Curve , Chromatography, Liquid/methods , Limit of Detection , Linear Models , Male , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
7.
RSC Adv ; 9(13): 7257-7265, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-35519957

ABSTRACT

This work describes the synthesis of novel antimicrobial agents consisting of N-halamine and dual quaternary ammonium with different alkyl chain lengths and their antimicrobial applications for PET nonwovens. The antimicrobial agents were grafted onto PET nonwovens via esterification with a crosslinker, 1,2,3,4-butanetetracarboxylic acid (BTCA). The cyclic amide structure in the antimicrobial agents could be easily converted to N-halamine after immersion in a diluted chlorine bleach solution. Variations in surface chemical composition of the modified PET nonwovens were examined by XPS. Antimicrobial activities of the nonwovens/fabrics were tested against S. aureus (Gram-positive) and E. coli (Gram-negative) strains. Systematic investigation showed the antibacterial activities were dependent upon the alkyl chain length. The synergism of N-halamine and dual quaternary ammonium could lead to significant antimicrobial activity with inactivation of up to 90% of S. aureus and E. coli after 10 minute contact. This work suggested that the novel composite biocides with N-halamine and dual quaternary ammonium groups and the associated surface modification methods could be of use for further developing antimicrobial nonwoven applications.

9.
Nat Commun ; 6: 8963, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26603335

ABSTRACT

A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin-valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10-20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

SELECTION OF CITATIONS
SEARCH DETAIL
...